Chapter 3.1 part 1

Chapter 3.1 Definition of Ping
Recall Both \mathbb{Z}^{2} and \mathbb{Z}_{n} are sets equipped with operatious-additiou and multiplication Operation is a rule to produce an element of the set out of an ordered pair of its elements: $a+b[a] \odot[b] \ldots$
Examples: $\pi_{1}, \pi_{n}, \mathbb{Q}, \mathbb{R}, M(\mathbb{R}), \quad f: \mathbb{R} \rightarrow \mathbb{R}$
In many cases, elements of the set cannot be taken "numbers".
Def Aring is a non-eupty set R equipped with trio operations which satisfy the following axioms

- addition and multiplication
a, b, c - arbitrary elements of R
(1) $a \in R, b \in R$ implies $a+b \in R$
(6) $a \in R, b \in R$ implies $a b \in R$
(2) $a+(b+c)=(a+b)+c$
(7) $a(b c)=(a b) c$ associativity of addition \# heuttipli.
(8) $a(b+c)=a b+a c$

$$
(a+b) c=a c+b c
$$

Distributive laws

Toxtra requirements for the addition
(3) $a+b=b+a$ addition is commentative
(4) There is $O_{R} \in R$ which satisfies

$$
a+O_{R}=a\left(=O_{R}+a\right)
$$

(5) Jor each $a \in R$, the equation $a+x=O_{R}$ has a solution in R
"element- a "

Examples

$$
E=h \times \in \pi / \times \text { is even }\} \text { is a ring }(\xi \times 3)
$$

In contrast, $4 x \in \pi_{2} \mid x$ is odd ζ is not a ring
$(r \times 8)$ Functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is a ring

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(f g)(x) & =f(x) g(x)
\end{aligned}
$$

In contrast, functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with operations

$$
(f+g)(x)=f(x)+g(x)
$$

$(f g)(x)=f(g(x))$ is not a ring:

$$
\begin{aligned}
f(g+h)(x) & =f(g(x)+h(x)) \\
& \neq f(g(x))+f(h(x))
\end{aligned}
$$

- distributive law fails

